AQA GCSE Physics: Foundation Advance Information of Assessed Content 2022 Link to specification: https://filestore.aqa.org.uk/resources/physics/specifications/AQA-8463-SP-2016.PDF Link to advance information document: https://filestore.aqa.org.uk/content/summer-2022/AQA-8463-AI-22.PDF Link to revised Physics equation sheet: https://filestore.aqa.org.uk/resources/physics/AQA-8463-ES-INS.PDF ## AQA GCSE Physics: Foundation Tier Paper 1 #### Exam date: 9th June All other specification points from P1, other than those on these pages that are explicitly omitted, **may still be assessed** in multiple choice questions/linked to a previous answer, so cannot be completely ignored in your revision | Spec point | Concepts | Bitesize | YouTube | |--|---|--|---| | 4.1.1 Energy changes in a system, and the ways energy is stored before and after such changes | identifying the energy changes in systems Calculate, using equations, the amount of energy associated with a moving object, a stretched spring and an object raised above ground level. Calculate, using an equation, the amount of energy stored in or released from a system as its temperature changes Calculate Power | https://www.bbc.co.uk/bitesiz
e/guides/zskp7p3/revision/1
https://www.bbc.co.uk/bitesiz
e/guides/z8pk3k7/revision/1
https://www.bbc.co.uk/bitesiz
e/guides/zy8g3k7/revision/1 | https://www.youtube.com/watch?v=JG
wcDCeYRYo https://www.youtube.com/watch?v=-
zy9eWzmGe4 https://www.youtube.com/watch?v=Qw
_9kX9PARc https://www.youtube.com/watch?v=63
OTIdNb-TE https://www.youtube.com/watch?v=ED
TODPhaaMY | | 4.1.2 Conservation and dissipation of energy | Describe the law of the conservation of energy Describe, and give examples of how energy is dissipated, or 'wasted' Explain ways of reducing unwanted energy transfers Describe thermal conductivity in relation to the rate of energy transfer by conduction, through a material Calculate the efficiency of a device, process or system | https://www.bbc.co.uk/bitesiz
e/guides/z8hsrwx/revision/1
https://www.bbc.co.uk/bitesiz
e/guides/zp8jtv4/revision/1
https://www.bbc.co.uk/bitesiz
e/guides/z2gjtv4/revision/1 | https://www.youtube.com/watch?v=H6 D_ViW0Ch4 https://www.youtube.com/watch?v=NI5 jaeBrlgQ https://www.youtube.com/watch?v=43 XCqAN53Sg https://www.youtube.com/watch?v=GT dgl-0KckA | | Required Practical 2: investigate the effectiveness of different materials as thermal insulators and the factors that may affect the thermal insulation properties of a material | Identify dependent, independent and control variables How to measure the dependent variable Analysing results Plotting graphs Drawing conclusions from data | https://www.bbc.co.uk/bitesiz
e/guides/z2gjtv4/revision/3 | https://www.youtube.com/watch?v=ILH
45loyPUA&t=2s
https://www.youtube.com/watch?v=M
Uy104ogCvw | #### Exam date: 9th June All other specification points from P1, other than those on these pages that are explicitly omitted, **may still be assessed** in multiple choice questions/linked to a previous answer, so cannot be completely ignored in your revision | Spec point | Concepts | Bitesize | YouTube | |---|---|---|--| | 4.2.1 Current, potential difference and resistance | Define electric current, potential difference and resistance Calculate current, potential difference or resistance Recognise components from their graphs of current against potential difference Describe the application of thermistors and LDRs Draw an appropriate circuit diagram using correct circuit symbols | Electrical circuit symbols - Electric circuits - AQA - GCSE Physics (Single Science) Revision - AQA - BBC Bitesize Electrical charge and current - Electric circuits - AQA - GCSE Physics (Single Science) Revision - AQA - BBC Bitesize Potential difference and resistance - Electric circuits - AQA - GCSE Physics (Single | GCSE Physics - V = IR Equation & Current/Potential Difference Graphs #15 - YouTube GCSE Science Revision Physics "Resistance" - YouTube Current & Potential Difference Electricity Physics FuseSchool - | | 4.2.5 Static electricity | Describe how objects can become statically charged describe evidence that charged objects exert forces of attraction or repulsion on one another when not in contact explain how the transfer of electrons between objects can explain the phenomena of static electricity. draw the electric field pattern for an isolated charged sphere explain the concept of an electric field explain how the concept of an electric field helps to explain the non-contact force between charged objects as well as other electrostatic phenomena such as sparking. | Science) Revision - AQA - BBC Bitesize Charging by friction - Static electricity - AQA - GCSE Physics (Single Science) Revision - AQA - BBC Bitesize Electric fields - Static electricity - AQA - GCSE Physics (Single Science) Revision - AQA - BBC Bitesize | GCSE Science Revision Physics Static Electricity (Triple) – YouTube GCSE Science Revision Physics Electric Fields (Triple) - YouTube GCSE Physics - Static Electricity #23 – YouTube GCSE Physics - Electric Fields #24 - YouTube | ### Exam date: 9th June All other specification points from P1, other than those on these pages that are explicitly omitted, **may still be assessed** in multiple choice questions/linked to a previous answer, so cannot be completely ignored in your revision | Spec point | Concepts | Bitesize | YouTube | |---|--|--|---| | Required Practical 5:
determine the
densities of regular and
irregular solid objects
and liquids. | Method to determine density of regular shaped objects Method to determine density of irregular shaped objects Measurements needed to determine mass and volume of objects Equipment and apparatus | https://www.bbc.co.uk/b
itesize/guides/zsqngdm/r
evision/1 | https://www.youtube.com/watch?v=ScXOp8Zph28 https://www.youtube.com/watch?v=lvqu6JAbaKc | | 4.3.1 Changes of state and particle model | Define and calculate the density of a substance or object recognise/draw simple diagrams to model the difference between solids, liquids and gases explain the differences in density between the different states of matter in terms of the arrangement of atoms/molecules. describe how, when substances change state mass is conserved. Describe changes of state as physical changes | https://www.bbc.co.uk/bitesize/guides/zqjy6yc/revision/1 https://www.bbc.co.uk/bitesize/guides/zwwfxfr/revision/1 | https://www.youtube.com/watch?v=hkBrw2fG75U https://www.youtube.com/watch?v=-EZmXVOSa20 | | 4.3.2 Internal energy and energy transfers | Define internal energy, specific heat capacity & specific latent heat Calculate, using an equation, the amount of energy stored in or released from a system as its temperature changes interpret heating & cooling graphs Use an equation that links energy transferred, mass and specific latent heat | https://www.bbc.co.uk/b
itesize/guides/zcncjty/rev
ision/1 | https://www.youtube.com/watch?v=4rT7-5yE4pQ https://www.youtube.com/watch?v=5WVT5NR0iLA https://www.youtube.com/watch?v=x7GZ2DXef84 | #### Exam date: 9th June All other specification points from P1, other than those on these pages that are explicitly omitted, **may still be assessed** in multiple choice questions/linked to a previous answer, so cannot be completely ignored in your revision | Spec point | Concepts | Bitesize | YouTube | |-----------------------------------|--|---|--| | 4.4.2 Atoms and nuclear radiation | Describe radioactive decay Describe the four types of nuclear radiation and their properties (ionising power and penetration through materials and the air) Definition and units of activity and count rate Write balanced nuclear equations for alpha and beta decay Recall the emission of a gamma ray does not cause the mass or charge of the nucleus to change Define half lives and determine half life from data Describe contamination and irradiation Suggest suitable precautions to take to protect against any hazard associated with contamination and irradiation | Stable nuclei - Radioactive decay - AQA - GCSE Physics (Single Science) Revision - AQA - BBC Bitesize Pages 1 – 4 Irradiation - Uses and dangers of radiation - AQA - GCSE Physics (Single Science) Revision - AQA - BBC Bitesize Pages 1 – 2 (NOTE page 3 – 4 may be covered by allow tariff/ synoptic link question) | GCSE Science Revision Physics "Radioactivity" – YouTube GCSE Science Revision Physics "Nuclear Equations" – YouTube GCSE Science Revision Physics "Half Life" – YouTube GCSE Science Revision Physics "Irradiation and Contamination" – YouTube | These specification points will **not be assessed** on this paper. | Spec point | |-----------------------------------| | 4.2.3 Domestic uses and safety | | 4.3.3 Particle model and pressure | | 4.4.1 Atoms and isotopes | | 4.4.4 Nuclear fission and fusion | ## AQA GCSE Physics: Founation Tier Paper 2 #### Exam date: 23rd June All other specification points from P2, other than those on these pages that are explicitly omitted, **may still be assessed** in multiple choice questions/linked to a previous answer, so cannot be completely ignored in your revision | Spec point | Concepts | Bitesize | YouTube | |--|---|--|---| | 4.5.1 Forces and their interactions | Describe the difference between scalar and vector quantities and give examples give examples of contact and non-contact forces Describe the relationship between mass, weight and gravitational field strength Use an equation to calculate weight Calculate the resultant of two forces that act in a straight line. Use vector diagrams to illustrate the resolving of forces e.g. two components acting at right angles to each other Use free body diagrams to describe qualitatively examples where several forces lead to a resultant force on an object, including balanced forces when the resultant force is zero | https://www.bbc.co.uk/bitesize/guides/zpqngdm/revision/1 https://www.bbc.co.uk/bitesize/guides/zyxv97h/revision/1 https://www.bbc.co.uk/bitesize/guides/zgncjty/revision/1 | https://www.youtube.com/watch?v=P1ISWWUkMd Q https://www.youtube.com/watch?v=xxK8N23nx9M https://www.youtube.com/watch?v=W2aBVbcHr k https://www.youtube.com/watch?v=PL8ATKipoB4 GCSE Physics - Vector Diagrams and Resultant Forces #43 – YouTube Resolving Forces using Scale Drawings – YouTube | | 4.5.2 Work done and energy transfer | Use an equation to calculate the work done to an object Convert between newton-metres and joules. Work done against the frictional forces acting on an object causes a rise in the temperature of the object. | https://www.bbc.co.uk/bitesize/guides/zgncjty/revision/3 | https://www.youtube.com/watch?v=JHEmPZ-YnrU | | 4.5.6.1 Describing motion along a line | Describe the difference between distance and displacement Use an equation to calculate speed describe the difference between speed and velocity explain that motion in a circle involves constant speed but changing velocity. Interpret distance-time graphs and velocity-time graphs Calculate speed of an accelerating object at any particular time by drawing a tangent and measuring the gradient of the distance—time graph at that time Calculate the distance travelled /displacement of an object by calculating the area under a velocity—time graph. Use an equation to calculate acceleration Describe how an object reaches terminal velocity | https://www.bbc.co.uk/bitesize/guides/zwc7pbk/revision/1 https://www.bbc.co.uk/bitesize/guides/zp2fcj6/revision/1 | https://www.youtube.com/watch?v=QaU9jMHh7gE https://www.youtube.com/watch?v=M_0FRIX8wIM https://www.youtube.com/watch?v=DkCw2C-DkT0 https://www.youtube.com/watch?v=b0VKlpetP9A https://www.youtube.com/watch?v=Kzx8GBTI5VM https://www.youtube.com/watch?v=YCVSQp428GI https://www.youtube.com/watch?v=VRvjQBJi0oY https://www.youtube.com/watch?v=EKrAPvSin-M | Exam date: 23rd June All other specification points from P2, other than those on these pages that are explicitly omitted, **may still be assessed** in multiple choice questions/linked to a previous answer, so cannot be completely ignored in your revision | Spec point | Concepts | Bitesize | YouTube | |--|---|---|--| | 4.6.1 Waves in air, fluids and solids | Describe the differences between transverse and longitudinal waves and give examples Define the property terms of waves Compare properties of waves Use an equation to calculate a time period Use an equation that links wave speed, frequency and wavelength describe a method to measure the speed of sound waves in air describe a method to measure the speed of ripples on a water surface. construct ray diagrams to illustrate the reflection of a wave at a surface. describe the effects of reflection, transmission and absorption of waves at material interfaces. | https://www.bbc.co.uk/b
itesize/guides/zgf97p3/r
evision/1
https://www.bbc.co.uk/b
itesize/guides/z9bw6yc/r
evision/1
https://www.bbc.co.uk/b
itesize/guides/zw42ng8/r
evision/1 | https://www.youtube.com/watch?v=aCu4VRKMstA https://www.youtube.com/watch?v=8K6gOST8pZk https://www.youtube.com/watch?v=wO49W5IsPOs | | 4.6.2
Electromagnetic
Waves | Describe electromagnetic waves as transverse and that they form a continuous spectrum that travel the same velocity through a vacuum (space) or air. Describe the 7 electromagnetic waves in order of increasing wavelength or frequency Describe how EM waves can be absorbed, transmitted or reflected and how refraction is due to differences in velocities of the waves in different substances construct ray diagrams to illustrate the refraction of a wave at the boundary between two different media. Describe the uses and dangers of EM waves Recall 1000 millisieverts (mSv) = 1 sievert (Sv) Construct ray diagrams for converging and diverging lenses Calculate magnification of images Describe how colour filters work by absorbing certain wavelengths of light If all wavelengths are reflected equally the object appears white. If all wavelengths are absorbed the objects appears black. | Reflection of waves - Reflection and refraction - AQA - GCSE Physics (Single Science) Revision - AQA - BBC Bitesize Convex and concave lenses - Lenses - AQA - GCSE Physics (Single Science) Revision - AQA - BBC Bitesize | GCSE Science Revision Physics "Electromagnetic Waves" – YouTube GCSE Science Revision Physics "Uses of EM waves" – YouTube GCSE Science Revision Physics "Convex Lenses" (Triple) – YouTube GCSE Science Revision Physics "Concave Lenses" (Triple) – YouTube GCSE Science Revision Physics "Concave Lenses" (Triple) – YouTube GCSE Science Revision Physics "VouTube" GCSE Science Revision Physics "Visible Light" (Triple) – YouTube | Exam date: 23rd June All other specification points from P2, other than those on these pages that are explicitly omitted, **may still be assessed** in multiple choice questions/linked to a previous answer, so cannot be completely ignored in your revision | Spec point | Concepts | Bitesize | YouTube | |--|---|--|---| | Required practical 9: investigate the reflection of light by different types of surface and the refraction of light by different substances. | Identify dependent, independent and control variables How to measure the dependent variable Analysing results Plotting graphs Drawing conclusions from data | https://www.bbc.co.uk/bitesize/guides/zw42ng8/revision/3 | https://www.youtube.com/watch
?v=2fN_jvf4fw8
https://www.youtube.com/watch
?v=tiqiN3y1ze4 | | 4.8.1 Solar system, stability of orbital motions, satellites | Describe the structure of the universe and our solar system Describe the life cycle of a star explain how fusion processes lead to the formation of new elements. describe the similarities and distinctions between the planets, their moons, and artificial satellites. explain qualitatively how for circular orbits, the force of gravity can lead to changing velocity but unchanged speed, for a stable orbit, the radius must change if the speed changes. | https://www.bbc.co.uk/bi
tesize/guides/zt2fcj6/revis
ion/1
https://www.bbc.co.uk/bi
tesize/guides/zpxv97h/rev
ision/1 | https://www.youtube.com/watch?v=mndRVjMovQk https://www.youtube.com/watch?v=V0Y1JIVuin4 https://www.youtube.com/watch?v=okMA18ppu98 | These specification points will **not be assessed** on this paper. | Spec point | | |--|--| | 4.5.4 Moments, levers and gears | | | 4.6.2.2 Forces, accelerations and Newton's Laws of motion | | | 4.5.6.3 Forces and braking | | | 4.6.3 Black body radiation | | | 4.8.2 Red-shift | |